EE 230
Lecture 24

Waveform Generators
- Sinusoidal Oscillators



Quiz 18

Determine the characteristic equation for the following network without
adding an excitation.




And the number Is ?



Quiz 18

Determine the characteristic equation for the following network without
adding an excitation.

Vx

Solution:
vx(

G+sC+iJ =0
sL

V, st+s—+ 2 | =0
CR LC

D s :52+Si+i
CR LC



Review from Last Lecture

XN Linear Xout N s
™ Network | > Ts=——

Theorem: The poles of any transfer function of a
linear system are independent of where the
excitation is applied and where the response Is
taken provided the “dead network” for the systems
are the same.

Or, equivalently,

Theorem: The characteristic equation D(s) of a
linear system are independent of where the
excitation is applied and where the response is
taken provided the “dead network” for the systems
are the same.



Review from Last Lecture

Poles of a Network
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Review from Last Lecture

Theorem: The characteristic polynomial D(s) of a
system can be obtained by assigning an output
variable to the “dead network™ of the system and
using circuit analysis techniques to obtain an
expression that involves only the output variable
expressed as X,F(s)=0 where F(s) is a polynomial.
When expressed in this form, the characteristic
polynomial of the system is D(s)=F(s)



Pole Locations of Waveform Generators
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Both have a single pole on the positive real axis
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Sinusoidal Oscillators

* The previous two circuits provided square
wave and triangular (“triangularish™) outputs

- previous two circuits had a RHP pole on
positive real axis

== \\Vhat properties of a circuit are needed to
provide a sinusoidal output

» What circuits have these properties



What properties of a circuit are needed to
provide a sinusoidal output?

=) |Nsight into how a sinusoidal oscillator works
« Characteristic Equation Requirements for
Sinusoidal Oscillation (Sec 13.1)
« Barkhausen Criterion (Sec 13.1)



Insight into how a sinusoidal oscillator works

XN Ns | Xour
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If e(t) is any excitation, no matter how small, can be expressed as

N s _ N S
D. s S-X; S-X, ... S=X

E s

m

Then the output can be expressed, in the s-domain, as

s N s

|\IE
Rs =Es T s = °
D s Ds



Insight into how a sinusoidal oscillator works

) Ts:g—z.ﬂ {P1 P2y - P} R s :NE > QN >
Linear Network DE S D S

Using a partial fraction expansion for R(s) obtain

a a a b b b
Rs =— 4+ 2 4 4—0 40 "1 4 "2 4 4_—M
S-p, S-p, S-p,  |SX, S-X, S-X

rt :.B'le

Then the output can be expressed, in the time domain, as

_ pt p,t Pt X t Xt Xt
rt =ae™ +a,e” +...+ae™ + be™* +b,e™” +..+b e

If the excitation is very small and vanishes , or is zero, the term due to the excitation
will vanish



Insight into how a sinusoidal oscillator works

) Ts:g—z.ﬂ {P1 P2y - P} R s :NE > QN >
Linear Network DE S D S

Under the assumption that the excitation vanishes,

~ Pt ot Pt
r t —alel +a262 +... Tt a.c

every pole can be expressed as the sum of a real part and imaginary part

p.= 0t B,

(where the real part or the imaginary part may be 0)

rt = ae”e™ + ae®e’” +.+ ae*el



Insight

INto how a sinusoidal oscillator works
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Theorem: If a linear network has a pole p.=Qq. .t JBk with a non-zero

imaginary part, then its complex conjugate p.= Q- JBk IS also a pole of

the network.

That is, all poles that are not on the real axis appear as complex-conjugate pairs

AlmM




Insight

INto how a sinusoidal oscillator works

XN _Ns
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rt = ae”e™ + ae* e +.+ aere

The terms on the right can be simply regrouped and renamed as

rt = ae”e”+aee™ + ae“e +ae e +..+ aeeM iy ee A

+.+ a,,e™ +.. a.e™

The first group of terms all correspond to complex conjugate pair poles and the
second group to those that lie on the real axis



Insight into how a sinusoidal oscillator works

) Ts:g—z.ﬂ {P1 P2y - P} R s :NE > QN >
Linear Network DE S D S

rt = ae”e’+ae e + ae®e +ae” e +..+ ae ey ee A

+..+ a,,e™ +.. a.e™

Theorem: The coefficient in the partial fraction expansion corresponding to a
pole with a non-zero imaginary part is the complex conjugate of the term
corresponding to the complex conjugate pole.

rt = ae”erae“e’™ + ae e +ae“e’H 1.+ ae* el g eve N

+.+ a.,e%" +. ae™



Insight into how a sinusoidal oscillator works

N N
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rt = ae”erae“e’™ + ae e +ae“e’H 1.+ ae*eli g eve’ N

+.+ a.,e% +. ae™

Consider now one of the complex conjugate pair terms 4 e*'e!' +3 e*'e A

A Gt Bt A AGtA— (At —n|A 7 t p
ae™elMt 13 eMe M =2|3 [e*cospit

Gt

rt = 2[a|e®cosft + 2[ale®cospit +..+ 2/a|e*cosAt

+.+ q,,e% +.. a.e™



Insight into how a sinusoidal oscillator works

) Ts:g—z.ﬂ {P1 P2y - P} R s :NE > .N >
Linear Network DE S D S

Gt

rt = 2[a|e®cosft + 2[ale®cospit +..+ 2/a|e*cosAt

+..+ 6% +.. a.e™

Consider now three cases, the real part of the pole is negative, the real part of
the pole is positive, and the real part of the pole is O

It the real part of the pole is negative, the corresponding term in r(t) will vanish

It the real part of the pole is positive, the corresponding term in r(t) will diverge to +/-«

It the real part of the pole is zero, the corresponding term in r(t) will be a sinusoidal
waveform that will persist forever

The condition for sinusoidal oscillation should be apparent !



What properties of a circuit are needed to
provide a sinusoidal output?

* Insight into how a sinusoidal oscillator works
mm)p Characteristic Equation Requirements for
Sinusoidal Oscillation (Sec 13.1)
« Barkhausen Criterion (Sec 13.1)



Sinusoidal Oscillation
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A circuit with a single complex conjugate pair of poles on the imaginary axis at
+/- B will have a sinusoidal output given by

Xour t =2/3,|sin(Bt+06)

The frequency of oscillation will be B rad/sec but the amplitude and phase are
indeterminate



Sinusoidal Oscillation Criteria

A network that has a single complex conjugate
pair on the imaginary axis at £jw and no RHP

poles will have a sinusoidal output of the form
Xo(t)=Asin(wt+0)

A and 0 can not be determined by properties of the linear
network



Characteristic Equation Requirements for
Sinusoidal Oscillation

Linear Xout
Network

Characteristic Equation Oscillation Criteria:

If the characteristic equation D(s) has exactly
one pair of roots on the imaginary axis and no
roots in the RHP, the network will have a
sinusoidal signal on every nongrounded node.



What properties of a circuit are needed to
provide a sinusoidal output?

* Insight into how a sinusoidal oscillator works
« Characteristic Equation Requirements for
Sinusoidal Oscillation (Sec 13.1)
=) Barkhausen Criterion (Sec 13.1)



Barkhausen Oscillation Criteria

Consider a basic feedback amplifier

.

XiN +:

A

><OUT

AR Is termed the loop gain




Barkhausen Oscillation Criteria

XIN +Q A XOUT
A
= A 1 g

Barkhausen Oscillation Criteria:

A feedback amplifier will have sustained oscillation if AB=-1

There are many subtly different ways various authors present Barkhausen criteria
but all invariably state, in some way, that must have AR=-1

Some state it must occur at only one frequency, others make comments about
waveshape, Sedra and Smith convey right idea but are neither rigorous or
completely correct, and most other authors have a similar problem



Relationship between Barkhausen Criteria for
Oscillation and Characteristic Equation Criteria

Barkhausen Oscillation Criteria

A feedback amplifier will have sustained oscillation if AR=-1

Characteristic Equation Oscillation Criteria

If the characteristic equation D(s) has exactly one pair of roots on the
imaginary axis and no roots in the RHP, the network will have a
sinusoidal signal on every nongrounded node

Differences:
1. Barkhausen requires a specific feedback amplifier architecture

2. Sustained oscillation says nothing about waveshape



Relationship between Barkhausen Criteria for
Oscillation and Characteristic Equation Criteria

Barkhausen Oscillation Criteria

A feedback amplifier will have sustained oscillation if Ap=-1

Characteristic Equation Oscillation Criteria (CEOC)

If the characteristic equation D(s) has exactly one pair of roots on the
imaginary axis and no roots in the RHP, the network will have a

sinusoidal signal on every nongrounded node
If a network can be represented as a basic feedback amplifier, then
A N(s
A, (s)= o =)
1+AB  D(s)
If D(s) criteria is satisfied, then at the poles p=tjw , 1+AB=0 or equivalently
Ap=-1

But, if a network has Ap=-1, even at a single pole pair, there may be other
poles in the RHP that would violate the CEOC needed for sinusoidal oscillation

If sinusoidal oscillation is required, be very careful about using Barkhausen Ciriteria



Characteristic Equation Oscillation Criteria (CEOC)

If the characteristic equation D(s) has exactly one pair of roots on the
imaginary axis and no roots in the RHP, the network will have a
sinusoidal signal on every nongrounded node

But — it is impossible to place a pair of poles of D(s) precisely on the imaginary
axis !
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Characteristic Equation Oscillation Criteria (CEOC)

But — it is impossible to place a pair of poles of D(s) precisely on the imaginary
axis ! If p=a £ jB

I

X jw

Re

Imi

L M . I

X(t)=Asin{wt+0)

Re Ra

Impossible to achieve

X < =jw

X (t)=e"Asin(wt+0) X(t)=e"Asin(wt+6)

Sinusoidal signal will decay to 0 Qutput will diverge to =



Characteristic Equation Oscillation Criteria (CEOC)

If the characteristic equation D(s) has exactly one pair of
roots on the imaginary axis and no roots in the RHP, the network

will have a sinusoidal signal on every nongrounded node.

Sinusoidal Oscillator Design Strategy

Build networks with exactly one pair of complex conjugate
poles slightly in the RHP and use nonlinearities in the
amplifier part of the network to limit the amplitude of the
output. i.e. p=a %jB where a is very small but positive

* Nonlinearity in amplifier will result in a small amount of distortion
* Frequency of oscillation will deviate slightly from 3

» Poles must be far enough in the RHP so process and temperature variations
do not cause movement back into LHP because if that happened, oscillation
would cease!



Sinusoidal Oscillator Design Strategy

Build networks with exactly one pair of complex conjugate
poles slightly in the RHP and use nonlinearities in the
amplifier part of the network to limit the amplitude of the

output. i.e. p=a #jB where a is very small but positive \im
X
Re
>
X

Know Barkhausen Crieteria to answer interviewers questions but use CEOC
criteria to design sinusoidal oscillators !



Sinusoidal Oscillators

* The previous two circuits provided square
wave and triangular (“triangularish™) outputs

- previous two circuits had a RHP pole on
positive real axis

* What properties of a circuit are needed to
provide a sinusoidal output

== \\/hat circuits have these properties



Sinusoidal Oscillator Design

Consider the following circuit: Vo R (\:2
AVAVAVA 7|
R]_ T Cl KVO —
By KCL N

V,| G,+sC,+ SC.G, = KV, SC.G,
G,+sC, G,+sC,

5 1 1 1-K 1
V,| s°+s + + + =0
RZCZ Rlcl R2C:1 R1R2(:1(:2

5 1 1 1-K 1
Ds =s°+s + + +
R,C, RC, RC,) |RR,CC,



Sinusoidal Oscillator Design

Consider the following circuit: Vo R (\:2
AVAVAVA 7|
R]_ T Cl KVO +
<~

5 1 1 1-K 1
Ds =s°+s + + +
RZCZ Rlcl R2C1 R1R2(:1C:2

If the coefficient of the s term is set to O, will have cc poles at

S= 1] 1
I?1|Q2C:1C:2

Thus, it the coefficient of the s term vanishes, it will be a sinusoidal oscillator of
frequency

1
w —_
% \/R1R2C1C2



Sinusoidal Oscillator Design

Consider the following circuit: Vo R (\:2
AVAVAYA 7|
R]_ T~ Cl KVO =

A
5 1 1 1-K 1
Ds =s°+s + + +
R,C, RC, RC,) |RR,CC, | Wosc

Oscillation Condition:

1 1 1-K
+ + =0
R,C, RC, R,C

This is achieved by having K satisfy the equation

K=1+&+&
C2 Rl

!

R1R2(:1(:2



Sinusoidal Oscillator Design

Consider the special practical case where
R,=R,=R and C,=C,=C:

C, R
K=1+—2+—-2=3
C, R, R — C KVt
N
1
Wose = R G

This is termed the Wein Bridge Oscillator
One of the most popular sinusoidal oscillator structures

Practically make K slightly larger than 3 and judiciously manage the
nonlinearities to obtain low distortion



The Wein-Bridge Oscillator

Another Perspective: Vo R (\:2
AYAVAYA 7|
R]_ T Cl KVO —
U k=1+4Re g
2 Rl
L7
Z]_ VO R2 Cz
AV )
RiS Ci KV,




The Wein-Bridge Oscillator

Another Perspective: )
Z, Rl% - Cy KVo
Zl Vi R, C,
AA—— v
ng Ci+— KV, C. R
K=1+=2+—-*2=3
J7 » Ry
V
J@_. K — 2~
Note this is a feedback amplifier with gain K
and 7
V Z, B= -
’ l Zl+ZZ

l Lets check Barkhausen Criteria for this circuit







The Wein-Bridge Oscillator

Lets check Barkhausen Criteria for this circuit

)
Vx Rl% - C4 KV
oy T
A4
Vo L 2 C, R
. B= Z, K=1+—2+—-%2=3
' Z,+7Z, C, R
|
Z, KR,C;s

KB = =
P z+Z, s’‘RR,CC,+s RC,+RC+R,C, +1
Setting KpB= -1, obtain
KR,C;s B
s’RR,C,C,+s RC,+R,C,+R,C, +1

s’RR,C.C,+s RC,+R,C,+R,C, -KR,C, +1=0



The Wein-Bridge Oscillator

Lets check Barkhausen Criteria for this circuit

-

P ——

K

Vx

Vo

Putting in s= jw, obtain the Barkhausen criteria

Solving, must have (from the imaginary part)

G LR,

Z;

Zy

1-wRR,CC, |#j[w RC,*+RC,+R,C,-KR,C, ]=0

K=1+

)
- C; KVo
K =1+&+&:3
2 Rl

And this will occur at the oscillation frequency of (from real part)

Wosc = \/

1

R1R2(:1(:2
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The Wein-Bridge Oscillator R%

A\
~ C1 K\Z%

Basic implementation for the equal R, equal C case

(2+€1)R1 Vo | Z |
R1 !
J/\/W — VOUT
n
R C
AAAN )
R — C
W =1
0OSC RC




The Wein-Bridge Oscillator I
I Vour

Amplifier Transfer Characteristics

R C
N
il
/
AVOUT / RS —~ C
ME
/1 v
Vsath T /7 1
w = _—
OSC
RC
VlN
-

a =+ VsatL

Slope slightly larger than 3
Amplitude of oscillation will be approximately Vgary (@ssuming Veary=-VsrarL)
Distortion introduced by the abrupt nonlinearities when clipping occurs



The Wein-Bridge Oscillator

Ry
w - Vour
Amplifier Transfer Characteristics -
\
AVOUT 7 R — C
/s

VIN

/ T VSATL

Abrupt nonlinearities cause distortion

Better performance (reduced nonlinearity) can be obtained by introducing less
abrupt nonlinearities to limit amplitude



Can we do this?
Obtain slope >3 for -V, <V, <V, and slope <3 for V,<V,,<V, and for -V,< V< -V,

Limit V,, to interval -V, <V, <V, j

b Vour _
Vsar /
/
/4
. Y Vi
Viyv— K Vour . | | -
V) Vs
/
/;
VsarL +

— If possible, hard nonlinearity associated with amplifier saturation will not be excited

— Dramatic reduction in distortion is anticipated



Consider:

L % Vour -
* 'y . . . .
L Analysis of Amplifier Circuit:
4 Case 1: = =
+ WV —
Ra
i ol
et e
~ Vi +

L W;::ﬂ \ Vour
NLD Transfer Characteristics Vi %

Vo=V, for I,>0 Solution:

2" R,
Ip = 0 for VD < Vxx Vour = |:1+TJ:| Vin

(will assume Vyy >0 )
Must determine where this part of the solution is valid



Valid for Vb1 < Vxx andVp, < Vi
but . Vpy =-Vgy and Vp, = Vg,
thus, valid for

Ve3> - Vyx and Vp; < Vi

R,

but :
Vis = (vo_\""{in}
R3 RE —R3
R, [, R,+R
2 TNy 1

V. - R, R, +R, vV
R3 Rz_Ra_ R, | n

Vis :Evin

1
valid for

R R
—2 V< Vi and —2 V), > — Vi
R1 1

R R
_R_1vﬂ e VIH < _1VKK

3 R3



Graph of solution for Case 1




Case 2: NLD, is in the conducting state (V, = Vyy)

NLD, is in the nonconducting state (I,

R

Ve
R3

AN

AN

4

Vi

P

Vour

I
.




Solution for Case 2 Continued
Vour 4 2t

Applying superposition we obtain

R. | Vi

s | 2
VOUT_VIN‘ 1+ R *V /
\ 17
. . Vin
I h
/ i‘ﬂ'ﬂ
R,

This solution is valid for Vp; <0 and I, =0

— V:IUT -V'\I-VH V}G’i
But V= -Vyyx and .= R R

2 3

Substituting the validity conditions, we obtain

-VH <0 and ch-\fh-"ﬁfm _ V}c:ac =0
R. R

The first of these inequalities is valid provided VK}(}U and substituting the expression for V7 into the
second, we obtain after simplification R

Vin > R_1Uxx

3




Solution for Case 2 Continued

R
Vx>0 Vi > R—1Vxx
3

Assuming V,,>0, the region where Case 2 is valid is thus determined by the second inequality

R
Vour & /A/ R
1




Case 3: NLD, is nonconducting (Ip; =0)

NLD, is conducting (Vpy = Viy)
Vick
f.-n,-"'r“_

.'f R ) R
VGUT::1_R_2 Vin — Vix R P

1.

Wiy




Solution for Case 3 continued:

This solution is valid for Vp, <0 and I, >0
_ _ | — Vu-vc:l_rr -vxx - U}m
But: V= -Vyy and o R, R,
Substituting the validity conditions, we obtain
-U}(K <0 and 1III"'Ilrlm-.‘ll"'lg::n_T-.hl"llg.\-u-: _ Uxx >0
R, R,
The first of these inequalities is valid provided VH}G and substituting the expression for V7 into the
second, we obtain after simplification Vour 4
R
Vin < =5 Vi
R
_ix,r
R, ™ Vin

Wiy




Case 4: NLD, and NLD, both conducting (this case never
happens and need not be considered since we already
have a solution for all inputs)

Thus, if we neglect the saturation of the op amp, we can write an expression for
the output as

e Re v pv, mw::%vﬂ "o
\ 1/ 3
[ R,+R, R R o
Vour =1 .le1 T 2R1 : ‘ Vin _R_;Vxx <V < R_;Uxx 1
[, R R
1+ 21|V V., Vo« ——1V  "3"
.l, R1 ) M IM R3 A

This is shown graphically, along with the saturation of the op amp, on the
following slide



Overall Transfer Characteristics

Vour &
VEP.TH T
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‘R
1
(. R +Ry1
R, ' R
¥R R, 1 Vin
| | -
T
il W,
My z
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Overall Transfer Characteristics

Vp=Vyy for 15>0

Ib=0  for Vp<Vyy >

&
e | NLD <}~
_|_

If V,,=0.6V, this represents a good approximation to the transfer
characteristics of a silicon diode. We thus can replace the NLD with a diode

and obtain the amplitude stabilized Wien-Bridge oscillator

I ” +

\Vi

— NLD <
5



Wein - Bridge Oscillator with Amplitude Stabilization

Amplitude Stabilizing Amplifier

Vour

RC Feedback Network




