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Lecture 24

Waveform Generators

- Sinusoidal Oscillators



Quiz 18
Determine the characteristic equation for the following network without 

adding an excitation.
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Quiz 18
Determine the characteristic equation for the following network without 

adding an excitation.

C R L

VX

Solution:

0X

1
V G+sC+

sL

2

X

1 1
V s +s +  = 0

CR LC

2 1 1
D s  = s +s +

CR LC



Theorem:  The poles of any transfer function of a 

linear system are independent of where the 

excitation is applied and where the response is 

taken provided the “dead network” for the systems 

are the same.

Linear 

Network

XOUTXIN N s
T s =

D s

Theorem:  The characteristic equation D(s) of  a 

linear system are independent of where the 

excitation is applied and where the response is 

taken provided the “dead network” for the systems 

are the same.

Or, equivalently, 

Review from Last Lecture



Linear 

Network

XOUTXIN=0

Dead Network

Linear 

Network

XOUTXIN N s
T s =

D s

D s

Poles of a Network
Review from Last Lecture



Theorem:  The characteristic polynomial D(s) of a 

system can be obtained by assigning an output 

variable to the “dead network” of the system and 

using circuit analysis techniques to obtain an 

expression that involves only the output variable 

expressed as X0F(s)=0 where F(s) is a polynomial.   

When expressed in this form, the characteristic 

polynomial of the  system is D(s)=F(s)

Review from Last Lecture



Review from Last Time:

VOUT2R

C

Inverting Integrator

VOUT1

R2R1

Noninverting Comparator 

with Hysteresis

VOUT2

R2R1

R

C

VOUT1

Pole Locations of Waveform Generators

Re

Im

Both have a single pole on the positive real axis

2

1

R 1
p = 

R RC

1-θ 1
p = 

θ RC

1

1 2

R
 θ = 

R R



Sinusoidal Oscillators

• The previous two circuits provided square 
wave and triangular (“triangularish”) outputs

- previous two circuits had a RHP pole on      
positive real axis

• What properties of a circuit are needed  to 
provide a sinusoidal output

• What circuits have these properties



What properties of a circuit are needed  to 

provide a sinusoidal output?

• Insight into how a sinusoidal oscillator works

• Characteristic Equation Requirements for 

Sinusoidal Oscillation (Sec 13.1)

• Barkhausen Criterion (Sec 13.1)



Insight into how a sinusoidal oscillator works

Linear Network

XOUTXIN N s
T s  = 

D s

1 2 n{p , p , ... p }

If e(t) is any excitation, no matter how small, can be expressed as 

E

E

N s
E s  = 

D s

E

1 2 m

N s
= 

s-x s-x ... s-x

E

E

N s N s
R s  =E s T s = 

D s D s

Then the output can be expressed, in the s-domain,  as



Insight into how a sinusoidal oscillator works

Linear Network

XOUTXIN N s
T s  = 

D s
1 2 n{p , p , ... p }

Using a partial fraction expansion for R(s) obtain  

E

E

N s N s
R s  =

D s D s

Then the output can be expressed, in the time domain,  as

... ...1 2 n 1 2 m

1 2 n 1 2 m

a a a b b b
R s  =

s-p s-p s-p s-x s-x s-x

 -1r t  = R sL

1 2 n 1 2 mp t p t p t x t x t x t

1 2 n 1 2 mr t a e  + a e  +...+ a e  + b e  + b e  +...+ b e

If the excitation is very small and vanishes , or is  zero, the term due to the excitation 

will vanish



Insight into how a sinusoidal oscillator works

Linear Network

XOUTXIN N s
T s  = 

D s
1 2 n{p , p , ... p } E

E

N s N s
R s  =

D s D s

1 2 np t p t p t

1 2 nr t a e  + a e  +...+ a e  

Under the assumption that the excitation vanishes, 

k k kp = α + βj

every pole can be expressed as the sum of a real part and imaginary part

(where the real part or the imaginary part may be 0)

1 1 2 2 n nt t t t t t

1 2 nr t a e e  + a e e  +...+ a e e  j j j



Insight into how a sinusoidal oscillator works

Linear Network

XOUTXIN N s
T s  = 

D s
1 2 n{p , p , ... p } E

E

N s N s
R s  =

D s D s

k k kp = α + βjTheorem:   If a linear network has a pole                            with a non-zero 

imaginary part, then its complex conjugate                          is also a pole of 

the network. 

k k kp = α - βj

That is, all poles that are not on the real axis appear as complex-conjugate pairs

Re

Im



Insight into how a sinusoidal oscillator works

Linear Network

XOUTXIN N s
T s  = 

D s
1 2 n{p , p , ... p } E

E

N s N s
R s  =

D s D s

1 1 2 2 n nt t t t t t

1 2 nr t a e e  + a e e  +...+ a e e  j j j

ˆˆ ˆˆˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ...

ˆ ˆ...

j jj j j j3 3 3 31 1 r 1 k k k k

k+2 n

t t t tt t t t t t t t

1 2 3 4 k k+1

t t

k+2 n

r t a e e a e e  + a e e a e e a e e a e e  

+...+ a e a e  

The first group of terms all correspond to complex conjugate pair poles and the 

second group to those that lie on the real axis

The terms on the right can be simply regrouped and renamed as



Insight into how a sinusoidal oscillator works

Linear Network

XOUTXIN N s
T s  = 

D s
1 2 n{p , p , ... p } E

E

N s N s
R s  =

D s D s

Theorem:   The coefficient in the partial fraction expansion corresponding to  a 

pole with a non-zero imaginary part is the complex conjugate of the term 

corresponding to the complex conjugate pole. 

ˆ ˆˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ...

ˆ ˆ...

j jj j j j3 3 3 31 1 1 1 k k k k

k+2 n

t t t tt t t t t t t t' ' '

1 1 3 3 k k

t t

k+2 n

r t a e e a e e  + a e e a e e a e e a e e  

+...+ a e a e  

ˆ ˆˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ...

ˆ ˆ...

j jj j j j3 3 3 31 1 1 1 k k k k

k+2 n

t t t tt t t t t t t t

1 2 3 4 k k+1

t t

k+2 n

r t a e e a e e  + a e e a e e a e e a e e  

+...+ a e a e  



Insight into how a sinusoidal oscillator works

Linear Network

XOUTXIN N s
T s  = 

D s
1 2 n{p , p , ... p } E

E

N s N s
R s  =

D s D s

ˆˆˆ ˆk k k kt t t t'

k ka e e a e e   j jConsider now one of the complex conjugate pair terms

ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆk k k k kt t t t t'

k k k ka e e a e e =2 a e cos t  j j

ˆ ˆˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ...

ˆ ˆ...

j jj j j j3 3 3 31 1 1 1 k k k k

k+2 n

t t t tt t t t t t t t' ' '

1 1 3 3 k k

t t

k+2 n

r t a e e a e e  + a e e a e e a e e a e e  

+...+ a e a e  

ˆˆ ˆ

ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ...

ˆ ˆ...

31 k

k+2 n

tt t

1 1 3 3 k k

t t

k+2 n

r t 2 a e cos t  + 2 a e cos t 2 a e cos t  

+...+ a e a e  



Insight into how a sinusoidal oscillator works

Linear Network

XOUTXIN N s
T s  = 

D s
1 2 n{p , p , ... p } E

E

N s N s
R s  =

D s D s

Consider now three cases, the real part of the pole is negative, the real part of 

the pole is positive, and the real part of the pole is 0

ˆˆ ˆ

ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ...

ˆ ˆ...

31 k

k+2 n

tt t

1 1 3 3 k k

t t

k+2 n

r t 2 a e cos t  + 2 a e cos t 2 a e cos t  

+...+ a e a e  

It the real part of the pole is negative, the corresponding term in r(t) will vanish

It the real part of the pole is positive, the corresponding term in r(t) will diverge to +/-∞

It the real part of the pole is zero, the corresponding term in r(t) will be a sinusoidal 

waveform that will persist forever

The condition for sinusoidal oscillation should be apparent !



What properties of a circuit are needed  to 

provide a sinusoidal output?

• Insight into how a sinusoidal oscillator works

• Characteristic Equation Requirements for 

Sinusoidal Oscillation (Sec 13.1)

• Barkhausen Criterion (Sec 13.1)



Sinusoidal Oscillation

Re

Im

A circuit with a single complex conjugate pair of poles on the imaginary axis at 

+/- jβ will have a sinusoidal output given by

ˆ )OUT kX t =2 a sin( t+   

The frequency of oscillation will be β rad/sec but the amplitude and phase are  

indeterminate



Sinusoidal Oscillation Criteria

A network that has a single complex conjugate 

pair on the imaginary axis at        and no RHP 

poles will have a sinusoidal output of the form 

X0(t)=Asin(ωt+θ)

jω

A and θ can not be determined by properties of the linear 

network



Characteristic Equation Requirements for 

Sinusoidal Oscillation

If the characteristic equation D(s) has exactly 

one pair of roots on the imaginary axis and no 

roots in the RHP, the network will have a 

sinusoidal signal on every nongrounded node.  

Linear 

Network

XOUT

Characteristic Equation Oscillation Criteria:



What properties of a circuit are needed  to 

provide a sinusoidal output?

• Insight into how a sinusoidal oscillator works

• Characteristic Equation Requirements for 

Sinusoidal Oscillation (Sec 13.1)

• Barkhausen Criterion (Sec 13.1)



Barkhausen Oscillation Criteria

A

β

XOUTXIN +

-

Aβ1

A
AFB

Consider a basic feedback amplifier

Aβ is termed the loop gain



Barkhausen Oscillation Criteria

A

β

XOUTXIN +

-

Aβ1

A
AFB

Barkhausen Oscillation Criteria:

A feedback amplifier will have sustained oscillation if Aβ=-1

There are many subtly different ways various authors present Barkhausen criteria 

but all invariably state, in some way, that must have Aβ=-1

Some state it must occur at only one frequency, others make comments about 

waveshape, Sedra and Smith  convey right idea but are neither rigorous or 

completely correct, and most other authors have a similar problem





If sinusoidal oscillation is required, be very careful about using Barkhausen Criteria







Characteristic Equation Oscillation Criteria (CEOC)

If the characteristic equation D(s) has exactly one pair of 

roots on the imaginary axis and no roots in the RHP, the network 

will have a sinusoidal signal on every nongrounded node.

Sinusoidal Oscillator Design Strategy
Build networks with exactly one pair of complex conjugate 

poles slightly in the RHP and use nonlinearities in the 

amplifier part of the network to limit the amplitude of the 

output. i.e. p=α ±jβ where α is very small but positive

• Nonlinearity in amplifier will result in a small amount of distortion

• Frequency of oscillation will deviate slightly from β

• Poles must be far enough in the RHP so process and temperature variations 

do not cause movement back into LHP because if that happened, oscillation 

would cease! 



Sinusoidal Oscillator Design Strategy
Build networks with exactly one pair of complex conjugate 

poles slightly in the RHP and use nonlinearities in the 

amplifier part of the network to limit the amplitude of the 

output. i.e. p=α ±jβ where α is very small but positive

Know Barkhausen Crieteria to answer interviewers questions but use CEOC 

criteria to design sinusoidal oscillators ! 

Re

Im



Sinusoidal Oscillators

• The previous two circuits provided square 
wave and triangular (“triangularish”) outputs

- previous two circuits had a RHP pole on      
positive real axis

• What properties of a circuit are needed  to 
provide a sinusoidal output

• What circuits have these properties



Sinusoidal Oscillator Design

R1

R2
C2

C1

V0

KV0

Consider the following circuit:

2 2 2 2
0 1 1 0

2 2 2 2

sC G sC G
V G +sC +  = KV

G +sC G +sC

By KCL

2

0

2 2 1 1 2 1 1 2 1 2

1 1 1-K 1
V s +s + + +  = 0

R C R C R C R R C C

2

2 2 1 1 2 1 1 2 1 2

1 1 1-K 1
D s  = s +s + + +

R C R C R C R R C C



Sinusoidal Oscillator Design

R1

R2
C2

C1

V0

KV0

Consider the following circuit:

2

2 2 1 1 2 1 1 2 1 2

1 1 1-K 1
D s  = s +s + + +

R C R C R C R R C C

If the coefficient of the s term is set to 0, will have cc poles at

1 2 1 2

1
s = j  

R R C C

Thus, it the coefficient of the s term vanishes, it will be a sinusoidal oscillator of 

frequency

OSC

1 2 1 2

1
ω  =  

R R C C



Sinusoidal Oscillator Design

R1

R2
C2

C1

V0

KV0

Consider the following circuit:

2

2 2 1 1 2 1 1 2 1 2

1 1 1-K 1
D s  = s +s + + +

R C R C R C R R C C

Oscillation Condition:

OSC

1 2 1 2

1
ω  =  

R R C C

0
2 2 1 1 2 1

1 1 1-K
+ +

R C R C R C

1 1 2

2 1

C R
K +

C R

This is achieved by having K satisfy the equation



Sinusoidal Oscillator Design

R

R C

C

V0

KV0

Consider the special practical case where

R1=R2=R and C1=C2=C:

OSC

1
ω  = 

R C

1 31 2

2 1

C R
K +

C R

This is termed the Wein Bridge Oscillator

One of the most popular sinusoidal oscillator structures

Practically make K slightly larger than 3 and judiciously manage the 

nonlinearities to obtain low distortion



The Wein-Bridge Oscillator

1 31 2

2 1

C R
K +

C R

R1

R2
C2

C1

V0

KV0

Z2
Z1

R1

R2
C2

C1

V0

KV0

Another Perspective:



The Wein-Bridge Oscillator

1 31 2

2 1

C R
K +

C R

R1

R2
C2

C1

V0

KV0

Z2
Z1

R1

R2
C2

C1

V0

KV0

Another Perspective:

+ K

V0

VX

Z2

Z1

Note this is a feedback amplifier with gain K 

and 
1

1 2

Z
β =

 Z +Z

Lets check Barkhausen Criteria for this circuit



End of Lecture 24



The Wein-Bridge Oscillator

1 31 2

2 1

C R
K +

C R

R1

R2
C2

C1

V0

KV0

Setting Kβ= -1, obtain

+ K

V0

VX

Z2

Z1

1

1 2

Z
β =

 Z +Z

Lets check Barkhausen Criteria for this circuit

1 1 1

2

1 2 1 2 1 2 1 2 1 1 2 2

Z KR C s
Kβ =

 Z +Z s R R C C +s R C +R C +R C +1

11 1

2

1 2 1 2 1 2 1 1 2 2

KR C s

s R R C C +s R C +R C +R C +1

1

2

1 2 1 2 1 2 1 1 2 2 1s R R C C +s R C +R C +R C KR C +1=0



The Wein-Bridge Oscillator

1 31 2

2 1

C R
K +

C R

R1

R2
C2

C1

V0

KV0

Putting in s= jω, obtain the Barkhausen criteria

+ K

V0

VX

Z2

Z1

1

1 2

Z
β =

 Z +Z

Lets check Barkhausen Criteria for this circuit

1

2

1 2 1 2 1 2 1 1 2 2 11-ω R R C C +j ω R C +R C +R C KR C =0

Solving, must have (from the imaginary part) 

1 1 2

2 1

C R
K +

C R
And this will occur at the oscillation frequency of (from real part)

OSC

1 2 1 2

1
ω  =  

R R C C



The Wein-Bridge Oscillator
R1

R2
C2

C1

V0

KV0

+ K

V0

VX

Z2

Z1

OSC

1
ω  =  

R C

V0UT

R C

R1

C

(2+ε1)R1

R

Basic implementation for the equal R, equal C case



The Wein-Bridge Oscillator

OSC

1
ω  =  

R C

Amplifier Transfer Characteristics

VIN

3

1

VOUT

VSATL

VSATH

Slope slightly larger than 3

Amplitude of oscillation will be approximately VSATH (assuming VSATH=-VSTATL)

Distortion introduced by the abrupt nonlinearities when clipping occurs

V0UT

R C

R1

C

(2+ε1)R1

R



The Wein-Bridge Oscillator

OSC

1
ω  =  

R C

Amplifier Transfer Characteristics

VIN

3

1

VOUT

VSATL

VSATH

VIN

3

1

VOUT

VSATL

VSATH

Abrupt nonlinearities cause distortion

Better performance (reduced nonlinearity) can be obtained by introducing less 

abrupt nonlinearities to limit amplitude

V0UT

R C

R1

C

(2+ε1)R1

R




























